Clinical impact and mechanistic contributions to leukemogenesis are difficult to assign to less common somatic mutations. However, the genetics of inherited syndromes can often be helpful in discerning the biological functions and mechanistic consequences of genes in other diseases. PHF6 (Xq26.2) encodes a protein consisting of two PHD-type zinc finger domains with activity in transcriptional regulation. PHF6 translocations were originally described in T-ALL and its mutations were later observed also in CML and adult AML. Germline (GL) PHF6MT cause Börjeson-Forssman-Lehmann syndrome (BFLS), an X-linked disorder characterized by intellectual disability and, to date, only a few BFLS cases were found to develop lymphoma or T-ALL. While regularly encountered in myeloid neoplasia (MN), the impact and functional meaning of PHF6 are not well established.

To determine the incidence, distribution and molecular context of PHF6MT we studied a large cohort of patients with MN (n=8617) collected from our institution and public series. 1 Overall, 73% of patients were AML (pAML 69%; sAML 4%), MDS (22%) and MDS/MPN (5%) with a median age at diagnosis of 67 ys (18-100).

We detected 149 patients (2%) carrying at least 1 PHF6MT with 11 harboring more than 1 hit. Four patients carried -X in addition to PHF6MT (2 males; 2 females). Majority of patients (68%) carried frameshift del/ins and nonsense. Mutations were scattered across all coding region with a slightly enrichment (47%) in the second PHD domain (239-330 aa) including the frequent R274Q/X (n=17). Common hits mainly affected arginine residues essential for DNA binding capacity (R129X n=9, R116X=7, R319X=5, R225X=3) followed by other hits (I314T=6, Y301X and C20fs=4 each). Of note, R116X, R225X, R274X, C280Y, H329R and Y303* lesions overlapped with the T-ALL PHF6MT spectrum while no overlap was found with GL mutations found in BFLS.

Overall, 75% of all PHF6MT carriers were males and carried mostly (80%) truncating lesions. Compared to mutational frequencies observed in other X-linked genes, truncating PHF6MT behaved similarly to those in ZRSR2 (78%), STAG2 (73%) and BCOR (62%). Conversely, BCORL1MT, KDM6AMT and PIGAMT were evenly distributed between genders. When evaluating mutational characteristics in males and females, no differences were found in sex-adjusted median variant allelic burden of PHF6MT (54.8 vs 51%) nor its mRNA expression levels suggesting locus inactivation. PHF6MT tended to be older than PHF6WT patients (72 vs 68 ys; P= .05) and had mostly (63%) AML followed by MDS (23%) and MDS/MPN (14%). OS was similar between PHF6MT and PHF6WT patients (P= .16).

Expression analyses showed that PHF6 loss leads to deregulation of chromatin and transcriptional factor genes. Indeed, in our cohort the most comutated genes were transcriptional factors and chromatin modifiers genes such as RUNX1 (26/149, 17%), ASXL1 (23/149, 15%) and TET2 (17/149, 11%). Of note, this group characterized by the triple ASXL1, RUNX1, TET2 mutational configuration clustered in one of the genomic groups previously identified (GC-3) 1 but the presence of these lesions did not worsen the OS as compared to PHF6MT without this mutational constellation. A low frequency of SF3B1MT (4%) was also noted confirming the enrichment of PHF6MT in AML rather than in low risk MDS. Further, 12% (14 males; 4 females) of PHF6MT patients had X-mutation mosaicism as shown by concomitant hits in BCOR (n=8), ZRSR2 (4), STAG2 (5), KDM6A (1).

PHF6MT were equally founder lesions (30%; 44/149) and subclonal (34%; 50/149) whereas the rest was indistinguishable by VAF discrimination (co-dominant). The most common subclonal mutations were U2AF1 (14%, 6/44), IDH1/2 (9%, 4/44) and RUNX1 (7%, 3/44). When PHF6MT were subclonal, the founder hits were in TET2 (14%, 7/50), DNMT3A and RUNX1 (12%, each 6/50) genes. Given the high frequency of RUNX1MT in PHF6MT we investigated whether RUNX1 and PHF6 might be correlated. Transcriptomic analysis of 6246 patients (from 9 public studies) 2 showed a direct linear correlation (AdjR2= .03, P=5.55e-05) between the expression of the two genes.

Our study is the largest to date to investigate the genetic landscape of PHF6MT in MN and highlights a strong connection of PHF6 with transcriptional regulation and chromatin genes. Ongoing scDNA-seq will clarify whether these mutations were acquired in distinct clones helping in dissecting the clonal hierarchy of PHF6MT cases.

Disclosures

Carraway:Celgene, a Bristol Myers Squibb company: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Agios: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Jazz: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Stemline: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; AbbVie: Other: Independent review committee; Takeda: Other: Independent review committee; Astex: Other: Independent review committee; Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Advani:Seattle Genetics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Kite Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Research Funding; Glycomimetics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Macrogenics: Research Funding; Immunogen: Research Funding; OBI: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Honoraria, Research Funding. Maciejewski:Regeneron: Consultancy; Novartis: Consultancy; Alexion: Consultancy; Bristol Myers Squibb/Celgene: Consultancy.

Sign in via your Institution